A comparison of implicit- and explicit-solvent simulations of self-assembly in block copolymer and solute systems.

نویسندگان

  • Justin R Spaeth
  • Ioannis G Kevrekidis
  • Athanassios Z Panagiotopoulos
چکیده

We have developed explicit- and implicit-solvent models for the flash nanoprecipitation process, which involves rapid coprecipitation of block copolymers and solutes by changing solvent quality. The explicit-solvent model uses the dissipative particle dynamics (DPD) method and the implicit-solvent model uses the Brownian dynamics (BD) method. Each of the two models was parameterized to match key properties of the diblock copolymer (specifically, critical micelle concentration, diffusion coefficient, polystyrene melt density, and polyethylene glycol radius of gyration) and the hydrophobic solute (aqueous solubility, diffusion coefficient, and solid density). The models were simulated in the limit of instantaneous mixing of solvent with antisolvent. Despite the significant differences in the potentials employed in the implicit- and explicit-solvent models, the polymer-stabilized nanoparticles formed in both sets of simulations are similar in size and structure; however, the dynamic evolution of the two simulations is quite different. Nanoparticles in the BD simulations have diffusion coefficients that follow Rouse behavior (D ∝ M(-1)), whereas those in the DPD simulations have diffusion coefficients that are close to the values predicted by the Stokes-Einstein relation (D ∝ R(-1)). As the nanoparticles become larger, the discrepancy between diffusion coefficients grows. As a consequence, BD simulations produce increasingly slower aggregation dynamics with respect to real time and result in an unphysical evolution of the nanoparticle size distribution. Surface area per polymer of the stable explicit-solvent nanoparticles agrees well with experimental values, whereas the implicit-solvent nanoparticles are stable when the surface area per particle is roughly two to four times larger. We conclude that implicit-solvent models may produce questionable results when simulating nonequilibrium processes in which hydrodynamics play a critical role.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block

Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...

متن کامل

Dissipative particle dynamics simulations of polymer-protected nanoparticle self-assembly.

Dissipative particle dynamics simulations were used to study the effects of mixing time, solute solubility, solute and diblock copolymer concentrations, and copolymer block length on the rapid coprecipitation of polymer-protected nanoparticles. The simulations were aimed at modeling Flash NanoPrecipitation, a process in which hydrophobic solutes and amphiphilic block copolymers are dissolved in...

متن کامل

Using Implicit/Explicit Salvation Models to Theoretical Study Tautomerism in 7H-purine-2, 6-diamine

A theoretical study at the B3LYP/6-31++G(d,p) level was performed on the tatumerization of 7H-purine-2, 6-diamine into 9H-purine-2, 6-diamine. Such a tautomerism can take place via three different pathways namely A, B, and C. The energetic results associated with the gas phase reveal that pathways A, B, and C display a very high activation Gibbs free energy of 45.1, 68.6 and 48.9 kcal/mol, resp...

متن کامل

High-accuracy alternating segment explicit-implicit method for the fourth-order heat equation

Based on a group of new Saul’yev type asymmetric difference schemes constructed by author, a high-order, unconditionally stable and parallel alternating segment explicit-implicit method for the numerical solution of the fourth-order heat equation is derived in this paper. The truncation error is fourth-order in space, which is much more accurate than the known alternating segment explicit-impli...

متن کامل

Simulation methods for solvent vapor annealing of block copolymer thin films.

Recent progress in modelling the solvent vapor annealing of thin film block copolymers is examined in the context of a self-consistent field theory framework. Key control variables in determining the final microdomain morphologies include swelling ratio or swollen film solvent volume fraction, swollen film thickness, substrate and vapor atmosphere surface energies, effective volume fraction, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 134 16  شماره 

صفحات  -

تاریخ انتشار 2011